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Abstract 

An embedded phase change memory technology in 
40nm low-power logic platform is demonstrated with 
minimal added process complexity - two non-critical 
additional masks over standard logic. Specially designed hard 
mask and etching process was used to achieve 50% shrinkage 
of the memory cell bottom electrode dimension with same 
lithography tooling as the 40nm logic platform. Bottom 
electrode CD shrinkage along with optimization of the 
electrode materials in terms of electrical and thermal 
conductivity enabled significant (~4x) write current reduction 
attaining competitive levels of ~300 A at 40nm BE CD. 
Embedded PCM cells reported in this work demonstrated 
over 100x memory window - (RESET/SET resistance 
switching ratio), over 200k cycling endurance with 
extrapolated 10 year retention at 120 . In this work not only 
large switching resistance ratios but also highly-controllable 
resistance values that are almost independent of the PCM 
starting resistance state are presented along with the 
corresponding programing pulse requirements. The switching 
resistance ratio and resistance value controllability are key 
features for neural network and compute-in-memory 
applications. In this work, their benefits on design margins 
for energy efficient high-density binary neural network for 
inference applications aiming accuracy levels of well over 
90% is asserted over an MNIST dataset.  

INTRODUCTION 

Phase Change Memory (PCM) has been reported as a 
good candidate for non-volatile memory applications [1-5]. 
Regardless of the application, low power operation, high 
density, and low process complexity  cost are key 
requirements to be met; for embedded memory applications 
compatibility with underlying logic process is also a upmost 
importance. Tackling the power challenge at fundamental 
memory cell level relates to minimizing the current required 
to promote phase change and the overall voltage drop across 
the memory element and its access device. Minimizing 
operating current entails PCM material optimization along 
with the memory cell structure electro-thermal design. 
Primary cell structures can be categorized as confined and 
non-confined [6-7]. Confined cells have the potential of 
smallest footprint at expense of challenging phase change 
material bottom-up gap-fill inside small holes or requiring 
complex patterning schemes [7-9]. In this work we focus on 
non-confined structures for 1T1R embedded memory arrays 
where transistor as access device enables write/reads at lower 
operating power supply as compared to ovonic threshold 

switches (OTS) as selector devices [10-11]. We report on 
operating current reduction while preserving solid memory 
switching windows as demonstrated on 1Mb test arrays by 
cost-effective bottom electrode dimension scaling and 
electro-thermal design, memory cell PCM material and etch 
optimization (un-doped to doped GST); results show good 
scalability potential and compare very well with published 
work from other groups [7,12-13]. This work also reports on 
our findings pertaining memory cell programing schemes 
aimed attain dependable and well controllable resistance 
switching independent of the initial state of the memory cells. 
Finally, models based on this work s experimental results are 
utilized to study the design space and guidelines the PCM 
technology potential benefits for energy-efficient binary 
neural network applications. These results complement well 
other reports on PCM as a key technology candidate for 
artificial intelligence (AI) applications [14-15].      

DEVICE STRUCTURE AND THERMAL SIMULATION 

Figure 1 shows the TEM image of mushroom structure 

PCM device fabricated between M4 and M5 of 40nm CMOS 

logic technology. Figure 2 shows the BE process flow for 

shrinking 50% BE CD from original logic design rule. Dual 

metal-1 and metal-2 used in BE process flow are capable of 

filling in 40nm BE CD. CMP process is performed to decide 

final BE height. Doped GST is then deposited onto small 

scale BE, followed by a top electrode (TE) layer. TE/GST are 

patterned and connected to M5 through top Via. In order to 

optimize etching condition for TE and GST individually, two 

step etching process is compared in Fig. 3. Composition 

change induced by etch process is observed on TE#1 (high 

Cl2 flow) and TE#2 (low Cl2 flow) is the key to achieve 

uniform GST composition. Optimized halogen gases for GST 

etching is also important to minimize etch damage as shown 

in Fig. 4 [16-17]. In Fig. 5, dual metal thicknesses ratio 

(BE#1 with Met-1/Met-2=1/8 and BE#2 with Met-1/Met-

2=8/1) are designed for engineering BE structure through 

TCAD thermal simulation [18].  For BE#2, more heat can be 

generated and stay in the GST/BE interface for reducing write 

current requirement.  In addition, melting volume for BE#2 is 

smaller as comparing to BE#1. In Fig. 6 and Fig. 7, electrical 

resistivity of Met-2 and thermal conductivity of Met-1 are 

studied on two different BE structures. From simulation result, 

BE#2 can combine both advantages for dramatically write 

current reduction as comparing to BE#1.  

DEVICE PERFORMANCE 

In Fig. 8, BE#2 can demonstrate 300 A write current 
for full amorphous state that is ~4x reduction comparing to 
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BE#1. In Fig. 9, RESET current reduction with BE area 
scaling is studied and experimental result follows the trend of 
I ~ A

0.8
, better than literature s results (I ~ A

0.65
) [19]. Fig. 10 

shows RT and 150  resistance drift behavior and estimated 
RESET R drift coefficient is 0.1. Designed 1T1R PCM 1Mb 
test-chip on 40nm low-power logic platform is shown in Fig. 
11. In Fig. 12, good HRS and LRS switching result is 
demonstrated with over 100x switching ratio. 

 Figure 13 shows the resistance distribution of HRS and 
LRS with various drain voltages (Vd). There is a great 
improvement of the chip operated to higher resistance by 
larger Vd due to larger amorphous volume formed while LRS 
resistance slightly increases owing to some residual 
amorphous regions existed after SET. In Fig. 14, SET speed 
is characterized with programming the cell back to the HRS 
before applying each SET pulse. The 100ns SET speed is 
defined by reaching 100x resistance switching window on 
doped GST. Through waveform modulation by increasing 
falling tail pulse width, symmetry of RESET/SET 
conductance as a function of write voltage can be 
demonstrated in Fig. 15. PCM program characteristic features 
advantage for precisely resistance control and it is critical for 
improving inference accuracy in computing-in-memory 
architecture. Fig. 16 demonstrated good cycling endurance up 
to 200K with applying 200ns pulse width without read 
verification. Fig. 17 is retention result for doped GST 
material. Calculated Ea is ~2.9 eV for predicting 10 year data 
retention at 120 . Through write-and-verification scheme, 
standard deviation of LRS and HRS resistance can be 
improved to < 3.5%. 

COMPUTING IN MEMORY 

To improve the data utilization efficiency in CMOS-
based deep neural network (DNN) accelerators, parallelized 
computation across multiple processing-elements (PE) are 
highly preferred [20-21]. Computing-in-memory (CIM) is an 
alternative a possible approach that integrates the 
computation into the memory array. In CIM, the matrix 
multiplication could be performed efficiently by activating 
multiple wordlines (WL) simultaneously and comparing the 
accumulated bitline current (IBL) or voltage (VBL) [22-23]. 
From the characterization result on 40nm PCM test-chip, the 
impact of cell resistance standard deviation (std) and 
resistance ratio (Rratio) on inference accuracy are simulated 
using a LeNet-5 binary neural network (BNN) with MNIST 
dataset [24-25]. We focused on the last two fully-connected 
(FC) layers, because they are technically more challenging 
due to more WL activations.  

Fig. 18 shows the product-sum result distributions of the 
last two FC layers, with number of positive one and number 
of negative one on the x-axis and y-axis, respectively. A 
{x=18, y=13} point would indicate this MNIST test image 
yields a +5 product-sum result. The average product-sum 
result from FC-1 and FC-2 are +4.37 and +8.2, respectively. 
This implies that FC-1 would face more technical challenge 
due to its narrower margin. Fig. 19 shows the impact analysis 
of std and Rratio on inference accuracy. To achieve a >90% 
accuracy on a two layer FC (64x64x10), a minimal Rratio of 
10 is required with 3% and 4% std on FC-1 and FC-2, 
respectively. Inference accuracy is very sensitive to std. 

Increasing the std from 3% to 4%, with a Rratio of 10, on FC-1 
increases the error rate by >2.9X. If Rratio could be increased 
to 143, then the std can be relaxed to 5%. Larger Rratio is 
highly favorable and could relax the std requirement. Fig. 20 
shows a case analysis of PCM versus two other emerging 
memory candidates. Even for BNN, in which both the 
weights and neuron activations are binarized to +1/-1, it is 
still critical to have a sufficiently large Rratio to compensate 
for the intrinsic memory device variation. In this regard, PCM 
benefits tremendously from its ability to fine-tune cell 
resistance and its high Rratio. 

CONCLUSION 

A 40nm CMOS-compatible PCM technology is 
demonstrated with cost-effective BE reduction method and 
damage-free TE/GST patterning processes. 300 μA write 
current is achieved with 4x reduction through optimizing dual 
metal thicknesses ratio. Over 100x resistance ratio, good 
resistance controllability, reliable cycling and good high 
temperature data retention are also demonstrated. Proposed 
PCM technology is a promising candidate of DNN hardware 
accelerator for handwritten MNIST accuracy over 90% with 
binary neural network. 
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Fig. 1 TEM image for  intergraded 

PCM on 40nm low-power logic 

platform. PCM is fabricated 

between M4 and M5.

Fig. 7 BE engineering by changing 

thermal conductivity of Met-1 (outer

layer). Low thermal conductivity 

Met-1 can reduce RESET current.

Fig. 6 BE engineering by changing 

electrical resistivity of Met-2 (inner 

layer). Higher electrical resistivity 

Met-2 can reduce RESET current.
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Fig. 5  TCAD thermal simulation for BE with 

engineering dual metal thicknesses ratio. Met-1 

and Met-2 are outer and inner layers, respectively. 

(a) BE#1 with Met-1/Met-2=1/8 and (b) BE#2 

with Met-1/Met-2=8/1. 

Fig. 2 Post BE etch TEM images with shrinking 50% BE CD from logic design rule 

after (a) metal-1 deposition, (b) metal-2 deposition and (c) CMP. 

(b)(a)

Fig. 9 RESET current as a function of BE 

area is plotted from experiment results. 

Similar to thermal simulation result, write 

current can be further reduced on BE#2.  

Fig. 8  Undoped GST225 R-I curves  are 

measured on different BE structures. 

RESET current as low as 300uA is 

demonstrated on BE#2.

Fig. 4 Ge/Sb/Te composition 

uniformity in GST is studied by EDS 

line scan (horizontal) with optimized 

TE/GST etching conditions.

Fig. 3 TE-Metal/Ge/Sb/Te composition uniformity is studied by EDS line scan (vertical) 

with different TE and GST etching conditions that includes (a) TE#1/GST#1, (b) 

TE#1/GST#2 and (c) TE#2/GST#2. TE metal etch is as important as GST etch since both 

etch conditions can affect Ge/Sb/Te composition uniformity. 
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Fig. 10 Data retention result at RT and 

150 . LRS is stable with time ( <0.01) 

while HRS starts to drift after 1 sec with 

~0.1. is defined as drift coefficient.
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Fig.14 R-I curve is measured 

for RESET and SET operation. 

Estimated SET speed are 100ns 

for reaching 100x R switching 

ratio. 

Fig.11 The 1Mb 1T1R PCM test-

chip on 40nm low-power logic 

platform.

Fig.13 Resistance distribution of HRS and 

LRS with various drain voltages (Vd). A 

great improvement of HRS by a larger Vd

while LRS resistance only slightly increases.  

Fig.12 Resistance distribution of HRS and 

LRS are compared with different write 

speeds. Longer PW#2 can achieve larger 

memory window than PW#1.

Fig. 16 200K cycling endurance 

of 1T1R PCM is demonstrated. 

RESET and SET are operated 

with 200ns pulse width. 

Fig. 17 Data retention 

result for extracting Ea on 

1T1R PCM device for 

predicting 10 year lifetime 

at 120 . 
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Fig.15 Write waveform modulation  

can achieve symmetry of 

RESET/SET conductance as a 

function of write voltage.
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Fig. 18 Simulated product-sum distributions from MNIST dataset show the last two FC layers will have different requirement. 

The average product-sum result for (a) FC-1 and (b) FC-2 are +4.37 and +8.2, respectively. FC-1 layer faces more stringent 

requirement due to its narrower margin from having a smaller difference between the number of +1 and -1. 

PCM: Rratio = 100,  std = 3.5%

Memory 1: Rratio = 10, std = 6%

Memory 2: Rratio = 2, std = 5%

Fig. 20 MNIST accuracy simulation analysis 

shows that even for binary neural network, a 

large Rratio is still critical to compensate the 

intrinsic memory device variation.

Fig. 19 Simulation analysis shows both standard deviation (std) and resistance 

ratio (Rratio) are critical for MNIST accuracy. In particular, for a FC size of 

64x64x10, a minimum Rratio of 10 is suggested with 3% and 4% std on FC-1 and 

FC2, respectively. If Rratio is increased to 143, the std could be relaxed to 5%. 
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